翻訳と辞書 |
Coffee ring effect : ウィキペディア英語版 | Coffee ring effect
In physics, a "coffee ring" is a pattern left by a puddle of particle-laden liquid after it evaporates. The phenomenon is named for the characteristic ring-like deposit along the perimeter of a spill of coffee. It is also commonly seen after spilling red wine. The mechanism behind the formation of these and similar rings is known as the coffee ring effect or in some instances, the coffee stain effect. ==Flow mechanism== Writing in ''Nature'', Robert D. Deegan of The University of Chicago and coworkers show that the pattern is due to capillary flow induced by the differential evaporation rates across the drop: liquid evaporating from the edge is replenished by liquid from the interior. The resulting edgeward flow can carry nearly all the dispersed material to the edge. Follow-up work by Hu and Larson suggests the evaporation induces a Marangoni flow inside a droplet. The flow, if strong, actually redistributes particles back to the center of the droplet. Thus, for particles to accumulate at the edges, the liquid must have a weak Marangoni flow, or something must occur to disrupt the flow. For example, surfactants can be added to reduce the liquid's surface tension gradient, disrupting the induced flow. Hu and Larson do mention that water has a weak Marangoni flow to begin with, which is then reduced significantly by natural surfactants. Later H. Burak Eral and colleagues in Physics of Complex Fluids group in University of Twente evoked alternating voltage electrowetting to suppress coffee stains noninvasively (i.e. no need to add surface active materials). This method shakes the contact line by alternatively increasing and decreasing contact angle effectively depinning the contact line as the droplet evaporates. Furthermore, with appropriate choice of excitation frequency internal flow fields can be generated counteracting the capillary flow increasing the efficiency of the suppression. In 2013, researchers from the Karlsruhe Institute of Technology, Germany revealed that in an inkjet printing process the coffee ring effect can also be suppressed by a rapid viscosity increase during drying. Recently, Byung Mook Weon, Wong Chun Pang and Jung Ho Je of Pohang University of Science and Technology showed an observation of reverse particle motion that repels the coffee-ring effect because of the capillary force near the contact line. The reversal takes place when the capillary force prevails over the outward coffee-ring flow by the geometric constraints.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Coffee ring effect」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|